Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Environ Monit Assess ; 196(5): 431, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38580863

RESUMEN

Effluent containing tartrazine can affect the environment and human health significantly prompting the current study into degradation using a sonochemical reactor operated individually and combined with advanced oxidation processes. The optimum conditions for ultrasound treatment were established as dye concentration of 10 ppm, pH of 3, temperature as 35 °C, and power as 90 W. The combination approach of H2O2/UV, H2O2/US, and H2O2/UV/US resulted in higher degradation of 25.44%, 57.4%, and 74.36% respectively. Use of ZnO/UV/US approach increased the degradation significantly to 85.31% whereas maximum degradation as 93.11% was obtained for the US/UV/Fenton combination. COD reduction was found maximum as 83.78% for the US/UV/Fenton combination. The kinetic analysis showed that tartrazine dye degradation follows pseudo first-order kinetics for all the studied processes. Combination of Fenton with UV and US was elucidated as the best approach for degradation of tartrazine.


Asunto(s)
Oxidantes , Tartrazina , Humanos , Peróxido de Hidrógeno , Cinética , Hierro , Monitoreo del Ambiente , Rayos Ultravioleta , Oxidación-Reducción
2.
Ultrason Sonochem ; 51: 69-76, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30514487

RESUMEN

Treatment of actual industrial wastewater is a challenging task and has not been investigated using the cavitation-based approaches significantly. In the present work, sonocatalytic degradation (catalysts as CuO and TiO2) of phosphonate based industrial wastewater, procured from a local company, has been studied in terms of COD reduction under optimized conditions (established using initial studies involving only ultrasound) of pH as 3.2, the temperature of 32 ±â€¯2 °C and 120 min as treatment time. The combination of ultrasound with H2O2 and ozone in different approaches has been investigated for maximizing the COD reduction. The optimum set of operating conditions for the sonocatalytic degradation were established as power dissipation of 90 W and catalyst loading as 0.75 g/L for CuO and 0.5 g/L for TiO2. Use of only ultrasound resulted in COD reduction of 37.2% whereas the combination of US with different approaches resulted in higher extents of COD reduction. The combined operation of US + H2O2 + O3, US + O3 + H2O2 + CuO, and US + O3 + H2O2 + TiO2 resulted in the extent of COD reduction as 91.5%, 93.8%, and 95.8% respectively. Overall, it has been clearly established that maximum COD reduction is obtained for the combined operation of sonocatalysis (catalyst as TiO2) with ozone and H2O2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA